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Abstract: Seasonal Auto Regressive Integrative Moving Average models (SARIMA) were developed
for monthly rainfall time series. Normality of the rainfall time series was achieved by using the
Box Cox transformation. The best SARIMA models were selected based on their autocorrelation
function (ACF), partial autocorrelation function (PACF), and the minimum values of the Akaike
Information Criterion (AIC). The result of the Ljung–Box statistical test shows the randomness and
homogeneity of each model residuals. The performance and validation of the SARIMA models were
evaluated based on various statistical measures, among these, the Student’s t-test. It is possible to
obtain synthetic records that preserve the statistical characteristics of the historical record through
the SARIMA models. Finally, the results obtained can be applied to various hydrological and water
resources management studies. This will certainly assist policy and decision-makers to establish
strategies, priorities, and the proper use of water resources in the Sinú river watershed.

Keywords: time series modelling; time series; seasonality; stochastic process

1. Introduction

Precipitation is one of the variables commonly used to study climate variability. It is the result
of the interaction of various physical phenomena and is characterized by its spatial and temporal
variation. Thus, the analysis of rainfall data is essential for the prediction of meteorological information
and also for the planning and management of water resource systems [1–4].

Missing data are a very frequent problem in climatology, and they influence the quality of the
results, impacting hydrological studies as well as water resource management. These studies require
complete and reliable records of rainfall data. Some methods to solve the problem of the reliability of
obtained results and findings can be found in the literature [5–8]. Among these, stochastic models stand
out. They are used to generate synthetic time series, which exhibit similar statistical characteristics
to the observed data and behave according to probabilistic laws. Consequently, the observed series
is only one of the possible achievements of the stochastic process and, thus, the forecast is not an
exact but a possible scenario [9]. For instance, Autoregressive Moving Average (ARMA) models are
stochastic models based on probability theory, so they can represent the temporal uncertainty of data.
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They originate from the research of Yule [10,11], who first described Autoregressive (AR) models;
Slutzky [12], who proposed Moving Average (MA) models; and Wold [13], who introduced ARMA
mixed models.

In addition, there are variations of autoregressive models, such as Periodic Autorregressive
Moving Average (PARMA) models; ARMA models with the Auxiliary inputs, ARMAX; Autoregressive
Interated Moving Average (ARIMA) models; and ARIMA models with seasonal components or
Seasonal Auto Regressive Integrative Moving Average (SARIMA), which allow the user to generate
synthetic time series considering cyclical variations in the observed series records [9,14].

Among the applications of stochastic models for forecasting rainfall, it is important to mention
works such as the one from Sanvicente-Sanchez and Solis-Alvarado [15], who proposed a method
to generate a synthetic series of daily precipitation, seeking to preserve the spatial, temporal, and
magnitude correlation of rain in a network of weather stations or in a watershed divided into
sub-watersheds. On the other hand, Lee [16] combined the Markov chains (AR models describing a
sequence of possible events in which the probability of each event depends only on the state achieved in
the previous event) with ARMA models to generate a synthetic time series [17,18]. By using SARIMA
models to analyze the daily and hourly rainfall data, Bang et al. [19] compared the performance of
ARMA, SARIMA, and ARMAX models to predict rainfall and temperature in India, finding that
temperature is best predicted by the SARIMA model and that the accuracy of predictions made for
rainfall by the ARMA model is better than those made by the ARMAX model.

Another area of potential breakthrough is the possible enhancement of forecasts for weather
and climate phenomena, such as El Niño–Southern Oscillation (ENSO) in the tropical Pacific and
La Niña (adverse cold effects). Such events are related to a variation of ±0.5 ◦C in the sea surface
temperature averaged over three consecutive months [20]. Sun and Furbish [21] found high values of
correlation coefficients between the sea surface temperature data and a precipitation series, studied
using ARMA (0,1) models. They showed that the El Niño and La Niña events are responsible for
40% of annual precipitation variations and up to 30% of river discharge variations in Florida. In this
context, some studies use Smooth Transition Autoregressive (STAR) for nonlinear time series modeling.
The results revealed STAR-type nonlinearities in ENSO dynamics, resulting in the superior sample
forecast performance of STAR over the linear autoregressive models [22]. Likewise, Arganis et al. [23]
proposed a procedure to determine sea surface temperatures through the combination of the Fiering
and Svanidze methods, overcoming deficiencies that appeared in the Svanidze and ARMA–Svanidze
models and allowing the analysis of the possible long term behavior of the values for sea surface
temperature and the modelling of “El Niño” or “La Niña” episodes in Mexico.

Despite the fact that nonlinear models such as Artificial Neural Networks, Artificial Intelligence
models, Genetic Programming, and Chaos Theory techniques have been successfully used as suitable
tools for modeling and forecasting meteorological information such as precipitation and runoff [24–28],
the versatility of stochastic models has been proved. Consequently, a wide range of improvements to
the procedures traditionally used can be found [29–38].

In general, stochastic models have made possible the study of several autocorrelation functions of
the hydro–climatological variables used to describe the processes of the hydrologic cycle. Furthermore,
hydrological time series modeling based on stochastic models has been confirmed by many researchers,
because these models are a proper choice for areas where nothing but the hydrological time series data
is available [1]. Thus, stochastic models are still suitable for analyzing and forecasting the variables of
the hydrological cycle, such as precipitation, in a reliable way [39–42].

Finally, data generation is an important subject in stochastic hydrology and is used by hydrologists
for many purposes. These include, for example, reservoir sizing and planning, water resources
management, and climate variability analyses.

This article proposes the SARIMA approach to generating synthetic monthly rainfall in the Sinú
river watershed in Colombia. The aspects considered are the model form identification, parameter
estimation techniques, seasonal time series modeling, and the effects of different model time increments.



Atmosphere 2020, 11, 602 3 of 16

2. Materials and Methods

2.1. Study Area

The Sinú River watershed is in Northwestern Colombia between 9◦30’ N and 7◦05’ N and 76◦35’ W
and 75◦15’ W (Figure 1), with an area of 13,972 km2 and in the jurisdiction of the Córdoba, Sucre, and
Antioquia departments. According to the Autonomous Regional Corporation of the Valleys of Sinú
and San Jorge (CVS), the watershed is divided according to its physical and biotic characteristics into
3 zones: Upper, Middle, and Lower Sinú [43]. It should be noted that the main populated communities
in the watershed are Tierralta and Valencia in the upper watershed, Montería (capital of the Córdoba
department) in the middle one, and Lorica in the lower one. Additionally, the URRÁ hydroelectric
power plant and the Paramillo National Natural Park are located in the upper watershed [44].
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Furthermore, according to information extracted from the climatological stations by the Colombian
Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM), the Sinú river watershed is
known for having a unimodal rainfall regime, with a dry season and rainy season per year. The rainy
season begins in April and ends in November, during which more than 80% of the annual rainfall
occurs. Extreme rainfall events appear in the Upper Sinú basin, reaching magnitudes of greater than
4000 mm annually and decreasing from south to north. Thus, in the lower part of the river (delta) the
precipitation is about 1300 mm. Similarly, it was evident that the average air temperature is above
27 ◦C and varies from south to north as the precipitation does. Consequently, in the upper Sinú there
are temperatures of up to 17 ◦C, while in the rest of the basin the temperature exceeds 32 ◦C.

The data used for the modeling were obtained from 75 climatological stations (Figure 2) from
the IDEAM database, and it was verifyied that they had influence in the study area using Thiessen
Polygons [45]. The missing rainfall data were estimated using the ClimGen model [46,47]. To gain
information to validate the models obtained, the original data were divided so that a calibration vector
was obtained that corresponded to the first 90% of the data and a validation vector was obtained
that was equivalent to the remaining 10%. This criterion was chosen considering what was reported
by Dabral and Murry [48] and Nury et al. [49]. This allows the user to make a forecast with the
selected model and compare the observed and predicted rainfall during the period corresponding to
the validation vector.

To guarantee the normality of the calibration vectors, a transformation was performed to make the
transformed data approximately Gaussian and stabilize the variance of the time series. Although there
are many families of transformations which may be used for such a purpose, the Box–Cox power
transformation was found to be useful in various fields including hydrology and meteorology, as
reported by Chatfield [50] and Dabral and Murry [48]. Given an observed time series, xt, the transformed
series is given by:

yt =

{ xt−1
λ si λ = 0

log xt si λ , 0
, (1)

where yt is the Box–Cox transformed data and λ denotes the power parameter chosen to make the
transformed data approximately Gaussian.

Before determining the optimal forecast model, a filtering procedure was performed.
The transformed calibration vectors were decomposed in three components: trend, seasonal, and
remainder. According to Cleveland et al. [51], the trend component is the low frequency variation
in the data together with nonstationary, long-term changes in the level; the seasonal component is
the variation in the data at or near the seasonal frequency, normally one cycle per year; and the
remainder component is the remaining variation in the data beyond that in the seasonal and trend
components [1,52]. The equation of the additive decomposition is:

Xt = Tt + St + Rt, (2)

where the time series, trend component, seasonal component, and the remainder component are
denoted by Xt, Tt, St, and Rt, respectively.
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2.2. SARIMA Models

The SARIMA model is based on the application of the ARMA models to a transformed time series
where the seasonal and non-stationary behavior has been eliminated.

For a seasonal series with s periods per year, the SARIMA(p,d,q) × (P,D,Q)s models are used.
Thus, having a Bs operator such that BsXt = Xt−s and since the seasonal difference can be written as



Atmosphere 2020, 11, 602 6 of 16

(Xt − Xt−s) = (1 − Bs)Xt, a SARIMA model with (p,d,q) non-seasonal order terms and (P,D,Q) seasonal
order terms—SARIMA(p,d,q) × (P,D,Q)s—has the following structure [50]:

φ(B)Φ(Bs)(1− B)d(1− Bs)DXt = θ(B)Θ(Bs)Zt, (3)

where Φ(Bs) and Θ(Bs) denote polynomials in Bs with P and Q order, respectively, while φ(B) and θ(B)
are polynomials in B with p and q order, respectively.

Four stages were followed to determine the optimal forecast model in each station:
identification, estimation, verification, and application or forecast, as suggested by Box et al. [53],
Salas and Obeysekera [54], and Burlando et al. [55]. In the first instance, it was required to verify the
data stationarity, and the general form or model order was estimated. Then, the model parameters
were estimated using the maximum likelihood method, and the model suitability was verified using
the Ljung–Box statistical test to prove that the residuals behaved as white noise [56]. The optimal
model was chosen from among those that satisfactorily adjusted the data. There are several tools,
such as the Bayesian Information Criterion (BIC), Hannan–Quinn criterion (H–Q), and the coefficient
of determination (R2), to determine the best model [1,49]. However, in most of the carried-out
research, the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) have
been used to select the optimal model. Considering this, the ACF and PACF were used to determine
the best type of model. The Akaike Information Criterion (AIC) of each model was estimated and
the one with the lowest AIC was chosen [53,57].

Finally, once the optimal model was determined, the forecast was made and the results were
compared with the validation vector to evaluate the performance. For all this, an algorithm was
designed in the programming language for statistical analysis “R”, which also allowed us to identify
the most suitable forecast model from the AIC. Thus, different model options, such as AR, MA, ARMA,
ARIMA, and SARIMA, were tested, and it was determined that the models that showed the best
performance were the SARIMA.

3. Results and Discussion

To illustrate the methodology used to determine the optimal forecast models, the results from
the Momil station will be used as an example. The corresponding calibration vector can be observed
in Figure 3. First, to guarantee the normality of the series, a data transformation was performed
using Box–Cox (Figure 4); then, the Augmented Dickey–Fuller test (ADF), a unit root test that allows
accepting or rejecting the null hypothesis of stationarity in a time series for validation, was used [48,58].
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Figure 4. Calibration vector of the transformed monthly precipitation time series using Box–Cox.

In the Momil station transformed series graph (Figure 4), peaks are observed approximately once
a year, which may be indicators that the series exhibits seasonal behavior. Nonetheless, although it is
not graphically possible to confirm the seasonality presence, it is possible by decomposing the time
series since it allows determining the series components (trend, seasonality, random components)
and analyzing their structure. In this way, Figure 5 shows the additive decomposition of the series in
question, where it is possible to identify that the series has a marked seasonality that mainly obeys
the unimodal precipitation regime typical from the area; it is evident that a trend is not maintained
throughout the series period.
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Figure 5. Decomposition of the calibration vector of the transformed precipitation time series using
Box–Cox (time series graphs with random, seasonal, and trend components).

Bearing this in mind, it is inferred that s = 12, i.e., the number of periods per year is 12 (one period
per month). To check the latter, the series correlograms were calculated from the ACF and the PACF, as
shown in Figures 6 and 7, where indeed it was possible to see that the highest correlation occurs when
the lag k is 12, indicating that values of a specific month have a greater relationship with those shown
in the same month from the immediately previous year.

Moreover, the correlograms (Figures 6 and 7) show a sinusoidal shape, which additionally suggests
that the SARIMA model is the most appropriate one to represent the precipitation series of the Momil
station. Thus, the different models were adjusted until the optimal one was selected using the AIC.
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The best fit model was SARIMA (2,0,0) × (2,1,0)12, which was selected based on the minimum values
of AIC = 2433.6 (Table 1). The simplified general equation is:(

1− 0.1294B− 0.1484B2
)(

1 + 0.6378B12 + 0.3567B24
)(

1− B12
)
Xt = Zt

where the parametersφp and Φp are observed on the left, multiplying the values of Xt times the different
lags, i.e., values that the variable took before the instant of interest time. In this case, since there are two
parameters φp, it implies that the two previous values of Xt, will be multiplied, i.e., it goes back two
months in the non-seasonal component, or the same as the model will use the precipitation values of
the two immediately preceding months to calculate rainfall at a given point in time. On the other hand,
the two parameters Φp of the seasonal component imply that the model considers the values of the
previous 2 years for the month analyzed. Thus, the equation of the SARIMA (2,0,0) × (2,1,0)12 is the
resulting one from solving the product of the polynomials shown in the simplified general equation
until arriving at the following expression:

Xt = Zt + 0.1294Xt−1 + 0.1484Xt−2 + Xt−12 − 0.6378Xt−12 − . . .− 0.0462Xt−37.
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Table 1. Akaike Information Criterion (AIC) from some of the forecast models tested at the Momil station.

Model AIC

SARIMA(2,0,0) × (2,1,0)12 2433.599
SARIMA(1,0,2) × (2,1,0)12 2435.017
SARIMA(3,0,0) × (2,1,0)12 2435.188
SARIMA(2,0,1) × (2,1,0)12 2435.246

Figure 8 shows the synthetic series generated (predicted data). It shows that the model can
represent both the magnitude of the recorded rainfall and its variation.
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Then, the residuals were analyzed using the Ljung–Box test and correlograms (Figure 9).
The correlograms show significant peaks in lags 24 and 25, indicating that those order models
could more represent the series structure. Nonetheless, using the AIC based on the parsimony principle
that the greater the number of parameters of a model, the greater its complexity, and a solution must be
sought that allows maintaining a balance between the adjustment and complexity, it is concluded that
the best model is the one selected, since it has minimum values of Akaike information criterion (AIC)
and therefore uses the fewest parameters to generate a synthetic series. The result of the Ljung–Box
statistic test shows the randomness and homogeneity of the residuals. Thus, the SARIMA model is
appropriate for forecasting. At this point, it is important to highlight that, although the residuals’
analysis is considered important for the analysis of the model’s performance, there could be a case
where the Ljung–Box test indicates that they are not random for a given significance level. Even so, if
the model can adequately represent the series’ behavior and preserve the mean of the original data, it
is concluded that the selected model is the most appropriate among all those tested and can be used to
make forecasts (Figure 10).

Subsequently, a test of hypothesis concerning the difference between two means with student’s
t-distribution was used to compare the mean of the calibration vector with that of the synthetic series,
and in the same way compare the validation vector mean with that of the forecast obtained [59].
The null hypothesis is that the difference in the means of the two datasets is equal to 0, therefore the
alternative hypothesis is that difference in means is not equal to 0.

In the Momil station case, Table 2 shows that at a 5% significance level there is no statistically
significant difference between the means of the calibration vector and the synthetic series. This is
because the p value (0.15) is greater than 0.05 and because the 95% confidence interval (−3.15, 20.4)
includes the 0 value. The above implies that by using the SARIMA model (2,0,0) × (2,1,0)12, a synthetic
series statistically equal to the original can be obtained, and therefore it is the optimal model for the
Momil station.
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Finally, when comparing the means of the validation vector and the forecast, it was concluded
that at a 2% significance level there is no statistically significant difference, since the p-value (0.023) is
greater than 0.02 and the 98% confidence interval (−0.82, 79.65) includes the 0 value (Table 2). The test
was performed for a confidence level of 98% for the comparison between the validation vector and the
forecast since, in this way, there was a greater probability that the hypothesis was satisfied.

Table 2. Hypothesis test regarding the difference between the two means from the Momil station.

Sample Mean Significance
Level

Confidence Interval
Lower Limit

Confidence Interval
Upper Limit p-Value

Calibration vector 120.4084
5% −3.146883 20.391518 0.1508Synthetic series 111.7861

Validation vector 107.9265
2% −0.8160514 79.6505786 0.02259Forecast 147.3437

Since the validation series and the forecast are determined to be statistically the same, it is
considered that the SARIMA (2,0,0) × (2,1,0)12 model adequately represents the data structure from the
Momil station and is appropriate for forecasting precipitation. Table 3 shows the optimal model for all
the climatological stations in the study area.
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Table 3. SARIMA models for modeling and forecasting the monthly rainfall in the Sinú river watershed in Colombia.

Climatogical
Station

SARIMA
Model φ1 φ2 φ3 θ1 θ2 θ3 Φ1 Φ2 Θ1 Θ2 µD

Loma Verde (0,0,0)(0,1,1)12 −0.8834
El Siglo (0,0,0)(0,1,2)12 −1.0793 0.2068

California (0,0,0)(2,1,0)12 −0.6461 −0.3850
Colomboy (0,0,0)(2,1,0)12 −0.6755 −0.2983

Planeta Rica (0,0,0)(2,1,0)12 −0.6189 −0.3164
Sahagún (0,0,0)(2,1,0)12 −0.682 −0.349
Mocarí (0,0,0)(2,1,0)12 −0.6398 −0.3180
Cotorra (0,0,0)(2,1,1)12 −0.0295 −0.0545 −0.8652

San Francisco del Rayo (0,0,0)(2,1,2)12 0.4976 −0.1149 −1.4319 0.4998
Lorica (13080020) (0,0,1)(0,1,1)12 0.2257 −0.7728
Aguas Mohosas (0,0,1)(2,1,0)12 0.1256 −0.7689 −0.3523
Ciénaga de Oro (0,0,1)(2,1,0)12 0.2233 −0.7156 −0.3461

Rabolargo (0,0,1)(2,1,0)12 0.1902 −0.5654 −0.2140
Sta Lucia (0,0,1)(2,1,0)12 0.2207 −0.7197 −0.3296
Sta Rosa (0,0,1)(2,1,0)12 0.2514 −0.6611 −0.3805

Cerro Bahía (0,0,1)(2,1,2)12 0.2661 −0.8306 −0.2828 −0.1806 −0.5501 0.0012
Villa Marcela (0,0,2)(0,1,1)12 0.2154 0.269 −0.7186

Cristo Rey (0,0,2)(2,1,0)12 0.2167 0.1387 −0.7206 −0.3576
Lorica_(13085020) (0,0,2)(2,1,0)12 0.1615 0.1828 −0.6843 −0.3757

Galan (0,0,2)(2,1,0)12 0.1478 0.1158 −0.6043 −0.2768
Berastegui (0,0,3)(0,1,2)12 −0.0146 0.106 0.1564 −0.9694 0.0969

La Doctrina (0,0,3)(2,1,0)12 0.2198 0.1056 0.1546 −0.6658 −0.3496
Apto Los Garzones (0,0,3)(2,1,0)12 0.0402 0.0749 0.1227 −0.5984 −0.3440

Turipaná (0,0,3)(2,1,0)12 0.0707 0.0833 0.0861 −0.6659 −0.3591
Centro Alegre (1,0,0)(0,1,1)12 0.1299 −0.8857
San Antonio (1,0,0)(0,1,1)12 0.1667 −0.8655

Caramelo (1,0,0)(2,1,0)12 0.0657 −0.6017 −0.3545
Buenos Aires (1,0,0)(2,1,0)12 0.0999 −0.6416 −0.3361

Carrillo (1,0,0)(2,1,0)12 0.2737 −0.6719 −0.3577
Chimá (1,0,0)(2,1,0)12 0.1147 −0.6356 −0.294
Chinú (1,0,0)(2,1,0)12 0.1063 −0.7288 −0.3523

La Esmeralda (1,0,0)(2,1,0)12 0.1934 −0.7593 −0.4226
Jobo El Tablón (1,0,0)(2,1,0)12 0.1458 −0.6508 −0.3557

Lamas 3 (1,0,0)(2,1,0)12 0.1994 −0.6914 −0.4064
Montería (1,0,0)(2,1,0)12 0.1859 −0.6725 −0.3422

Sabana Nueva (1,0,0)(2,1,0)12 0.2379 −0.6474 −0.346
Sincelejo (1,0,0)(2,1,0)12 0.2976 −0.6623 −0.3649
Tierralta (1,0,0)(2,1,0)12 0.193 −0.6672 −0.2934
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Table 3. Cont.

Climatogical
Station

SARIMA
Model φ1 φ2 φ3 θ1 θ2 θ3 Φ1 Φ2 Θ1 Θ2 µD

Venecia (1,0,0)(2,1,0)12 0.2314 −0.6749 −0.3314
Coroza 1 (1,0,0)(2,1,0)12 0.1853 −0.5819 −0.3239
Maracayo (1,0,0)(2,1,0)12 0.0946 −0.6326 −0.3116
San Carlos (1,0,0)(2,1,0)12 0.2240 −0.7045 −0.3688

Sta Cruz Hda (1,0,0)(2,1,0)12 0.1214 −0.6337 −0.2864
La Despensa (1,0,0)(2,1,1)12 0.2429 −0.0524 −0.0393 −0.876

Univ de Córdoba (1,0,0)(2,1,1)12 0.1578 −0.0136 −0.0165 −0.8869
Palma de Vino (1,0,0)(2,1,2)12 0.2719 0.4669 −0.2038 −1.3881 0.5083

Sabanal (1,0,0)(2,1,2)12 0.1481 0.4505 −0.1412 −1.3249 0.408
Pica Pica (1,0,1)(0,1,2)12 0.8508 −0.7203 −1.0251 0.1244
El Cielo (1,0,1)(1,1,2)12 0.8734 −0.4547 0.5283 −1.6284 0.6619 0.0057

Boca de la Ceiba (1,0,1)(2,1,0)12 0.6920 −0.5635 −0.6869 −0.3355
Carrizal (1,0,1)(2,1,0)12 0.8387 −0.7691 −0.7033 −0.2817
Coroza 2 (1,0,1)(2,1,0)12 0.6065 −0.4798 −0.6835 −0.3534

Horizonte (1,0,1)(2,1,0)12 0.7063 −0.557 −0.6029 −0.2798
Jaraguay (1,0,1)(2,1,0)12 0.9261 −0.7508 −0.6285 −0.3626
El Limón (1,0,1)(2,1,0)12 0.6210 −0.5041 −0.6884 −0.3463

San Anterito (1,0,1)(2,1,0)12 0.8305 −0.6224 −0.6904 −0.3417
Tampa (1,0,1)(2,1,0)12 0.8516 −0.7476 −0.652 −0.3254

El Trapiche (1,0,1)(2,1,0)12 0.8098 −0.6725 −0.5771 −0.3797
Villa Arteaga (1,0,1)(2,1,0)12 0.804 −0.6505 −0.6582 −0.2823

La Pastora (1,0,2)(0,1,1)12 0.9727 −0.8175 −0.0911 −0.8712
Sajonia Hda (1,0,2)(0,1,1)12 0.9534 −0.7198 −0.1231 −0.8531
Trementino (1,0,2)(0,1,2)12 −0.9449 1.1363 0.2131 −0.9278 0.0373

Callemar (1,0,3)(0,1,1)12 0.9875 −0.7092 −0.0832 −0.1580 −0.8647
Apto Berastegui (2,0,0)(2,1,0)12 0.1331 0.1471 −0.5945 −0.3333

Flor del Sinú (2,0,0)(2,1,0)12 0.0941 0.1483 −0.6181 −0.3056
Momil (2,0,0)(2,1,0)12 0.1294 0.1494 −0.6378 −0.3567

San Bernardo (2,0,0)(2,1,0)12 0.092 0.1452 −0.7489 −0.3671
Salado El (2,0,0)(2,1,0)12 0.1046 0.1261 −0.7196 −0.3762

Pezval (2,0,0)(2,1,1)12 0.1296 0.0843 −0.0191 −0.1493 −0.8849
Puerto Nuevo (2,0,0)(2,1,1)12 0.207 0.0079 −0.1806 −0.254 −0.7325 0.001

La Granja (2,0,1)(2,1,0)12 −0.4645 0.2069 0.6187 −0.634 −0.3466
Buenos Aires 1 (2,0,1)(2,1,0)12 −0.6891 0.1377 0.7795 −0.5973 −0.2836

Corocito (3,0,0)(2,1,0)12 0.322 −0.0043 0.1264 −0.6021 −0.2633
Quimarí (3,0,0)(2,1,0)12 0.0831 0.031 −0.1579 −0.7179 −0.3972
Cereté (3,0,0)(2,1,0)12 0.2795 0.0277 0.1427 −0.7331 −0.3709

φ1, . . . , φp: autoregressive model parameters of order p; θ1, . . . , θp: moving average model parameters of order q; Φ1, . . . , Φp: seasonal autoregressive model parameters of order P; Θ1,
. . . , Θp: seasonal moving average models parameters of order Q; µD: drift.
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4. Conclusions

This study focused on modeling and forecasting a monthly rainfall series using SARIMA modeling.
The results obtained can be applied for various hydrological and water resource management studies.
This will certainly assist policy and decision-makers to establish strategies, priorities, and the proper
use of water resources in the Sinú river watershed—e.g., the proposed models can be used to determine
the occurrence of the El Niño—Southern Oscillation phenomena, to identify the potential for water
harvesting use, and to operate irrigation systems.

The monthly precipitation series recorded in the stations of the study area show a seasonal
behavior, reflecting the typical unimodal rain regime from the basin. Similarly, it was determined that
a trend was not maintained throughout the recording period.

Through the Box–Cox transformation, it was possible to guarantee the stationarity assumption for
the precipitation time series recorded in the Sinú river basin. This allowed us to establish that, given
the seasonal behavior of the series analyzed, the SARIMA models allow the satisfactory representation
of the temporal structure of precipitation in the study area. The SARIMA approach showed an
improvement over the integration of the removal of the trend, periodicity, and stochastic components
approach in time series modelling. The different performance statistics in the model development and
validation phase of this study also confirmed higher prediction accuracy using the SARIMA models.

By means of the stochastic SARIMA models, it was possible to generate a synthetic time series
of precipitation without missing data, which allows us to preserve the behavior and structure of the
original data. It was shown that the synthetic series obtained are statistically the same as the observed
precipitation, and likewise that the forecasts made using the SARIMA models selected for each season
adequately represent the behavior of the rainfall in the area. Based on the results, stochastic models are
one of the most appropriate techniques for the prediction of rainfall.

It is important to highlight that although the forecasts obtained with the models do not allow
predicting the exact precipitation amount, they can reveal the probable trend of future rains and
provide information that can help decision-makers to establish strategies in areas such as agriculture,
where it is of utmost importance to know the beginning and end of the rainy seasons the planning of
civil works; and the preparation of mitigation plans for natural dangers, such as floods and droughts.

Finally, it is worth noting that rational planning and comprehensive management of water
resources require forecasting events that may occur in the future, bearing in mind at the same time that
it is usually based on past events. For this reason, time series analysis is a valuable tool since it allows
making inferences about the future.
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