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Abstract A fractal analysis of rainfall events registered in Baja California was
carried out. Rainfall data from 92 climatological stations distributed along the
studied region with at least 30 years of records were used. By studying rainfall
series patterns, Hurst exponent values were obtained. The rescalated range method
(R/S), box-counting method and the Multifractal Detrended Fluctuation Analysis
(MF-DFA) were used, having as a result the Hurst exponent values for different
time scales (entire record, 25, 10, and 5 years scales). Data showed that the daily
rainfall series tended to present a persistent pattern. The analysis from the Hurst
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exponent on the previously mentioned time scales showed that, at a lesser time
scale, their values increase; thus, the series tended to present a stronger persistent
behavior.

1 Introduction

Rainfall is a random variable that evolves in time and space (Kandelhardt et al.
2003; Xu et al. 2015; Brunsell 2010; Gires et al. 2014; Millan et al. 2011; Pinel
et al. 2014); therefore it can be analyzed spatially and temporally, allowing to
comprehend the climatological behavior of a region based on its basic character-
istics such as magnitude, duration and frequency.

Time series analysis studies a variable, in order to comprehend its evolution
through time (Hoang et al. 2012); for which stochastic methods and fractal methods
have been applied. Stochastic methods make predictions and obtain a relationship
with other variables (Akbari and Friedel 2014; Caballero et al. 2002; Nunes et al.
2011); however, these methods present a disadvantage: a random variable, in this
case rainfall, cannot be analyzed at different scales (Haui-Hsien et al. 2013; Sva-
nidze 1980); therefore, fractal methods have been applied to analyze rainfall time
series at multiple scales and dimensions (Lovejoy et al. 1987; Fluegeman and Snow
1989; Gallant et al. 1994; Lovejoy and Mandelbrot 1985; Lovejoy et al. 2012; Pinel
et al. 2014; Schepers et al. 1992; Selvam 2010; Sivakumar 2000; Venugopal et al.
1999; Rangarajan and Sant 2004).

Mandelbrot (1967) introduced the concept of fractal in terms of self-similar
statistics, stating that the shape of an object does not define its size; and established
fractals as objects that possess a similar appearance when observed at different
scales.

While determining the self similarity characteristics and the spatial-temporal
fluctuations at multiple scales for rainfall time series, several methodologies have
been applied; such as: rescalated range (R/S) (Hurst 1951, 1956; Mandelbrot 1972),
box-counting method (Lovejoy et al. 1987; Breslin and Belward 1999), Multifractal
Detrended Fluctuation Analysis (MF-DFA) (Movahed 2006), wavelet method
(Velasquez et al. 2013), power spectrum method (Valdes-Cepeda et al. 2003),
Higuchi method (Kalauzi et al. 2009), Detrended Fluctuation Analysis
(DFA) (Yuval and Broday 2010), Fractal-Multifractal method (Huai-Hsien et al.
2013), Hurst-Kolmogorov method (Koutsoyiannis et al. 2011), Fractionally Inte-
grated Flux (FIF) (Verrier et al. 2010), Fractal Brownian Surface (Tao and Barros
2010) and the fractal correlation dimension (D2) (Capecchi et al. 2012). Due to the
application of the previous methods, it has been found that rainfall possesses fractal
properties (Venugopal et al. 1999; Amaro et al. 2004; Beran 1994; Oñate 1997;
Peters et al. 2002; Schertzer et al. 2010; Turcotte 1994; Lanza and Gallant 2006;
Hubert and Carbonnel 1990); however the distribution of rainfall drops do not have
these properties (Malinowki et al. 1993; Lovejoy and Schertzer 1987, 1990, 2006;
Hentschel and Procaccia 1984; Lombardo et al. 2012).
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Fractal behavior of rainfall time series has a relationship with altitude, such that
at higher altitude a stronger antipersistent behavior occurs (Velasquez et al. 2013).
A high frequency of zero values in the rainfall time series is an important factor to
consider, as it can influence the fractal parameters obtained (Gires et al. 2012;
Lopez-Lambraño 2012; Verrier et al. 2010).

The aim of this research is to analyze the fractal behavior of rainfall events in
Baja California, Mexico, with the purpose of find a relation with climatological
distribution, altitude above sea level, average temperature and average annual
rainfall. So as to achieve this, 92 climatological stations with at least 30 years of
records were analyzed; subsequently, using the Hurst exponents, a spatial and
temporal analysis was carried out with the object of compare it with the previously
mentioned variables. The expected results will allow to find a relation that enables
to conduct climate change analysis in the studied zone.

2 Theory

2.1 Rescalated Range Method (R/S)

The original scheme proposed by Hurst (1951, 1956) proceeds with the following
steps: the input data (daily rainfall) are taken as the difference between the rainfalls
on two consecutive days:

I 0i = Ii − Ii+1 ð1Þ

where Ii is the total rain amount on day i. The mean value of the difference over a
period τ is:

⟨I 0⟩τ =
1
τ
∑
τ

i=1
I 0i ð2Þ

Now let Xði, τÞ be the difference between I 0i and ⟨I 0⟩τ defined as

Xði, τÞ= ∑
i

u=1
I 0u − ⟨I 0⟩τ
� � ð3Þ

Finally, the variable R and the standard variation S are given by

RðτÞ= max
1≤ i≤ τ

Xði, τÞ− min
1≤ i≤ τ

Xði, τÞ ð4Þ
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SðτÞ= 1
τ
∑
τ

i=1
I 0i − ⟨I 0⟩τ
� �2� �1 2̸

ð5Þ

We therefore obtain, for each value of the scale τ, an R S̸ number which follows
a power law. If we take logarithms on both sides, we obtain the Hurst exponent
value H as the value of the slope:

logðR S̸Þ∼H logðτÞ ð6Þ

2.2 Box-Counting Method

According to Peñate et al. (2013), the box counting method is based on dividing the
space of observation (the time interval T) into n non-overlapping segments of
characteristic size s, such that s= T n̸ for n=2, 3, 4, . . . ., and computing the
number NðsÞ of intervals of length s occupied by events. If the distribution of events
has a fractal structure, then the relationship NðsÞ=CsD prevails. The fractal or
box-counting dimension Df is estimated from the slope D of the regression line of
logðNðsÞÞ versus logðsÞ. This parameter, Df = Dj j, describes the strength of the
events and can measure the phenomenon’s nature since it quantifies the
scale-invariant clustering of the time series. Clustering increases when D approa-
ches 0. Hence, the smaller fractal dimensions correspond to clusters formed by
events that occur sparsely. If D is close to 1, the events are randomly spaced in time.
To sum up, the box-counting method uses boxes to cover an object to find the
fractal dimension. The signal is partitioned into boxes of various sizes and the
amount of non-empty squares is counted. A log-log plot of the number of boxes
versus the size of the boxes is done. The box dimension is defined by the exponent
Db in the relation:

NðsÞ≈ 1
sDb

ð7Þ

where NðsÞ is the number of boxes with linear size, s needed to cover the set of
points distributed on a bidimensional plane. A number of boxes, proportional to a
1 s̸, are needed to cover the set of points on a line; proportional to 1 s̸2, to cover a
set of points on a plane, etcetera.

In theory, for each box size, the grid should be configured in such a way that the
minimum number of boxes is occupied. This can be achieved by rotating the grid
for each box size in 90° and plotting the minimum value of NðdÞ.
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The Hurst exponent value can be calculated from the following expression:

Db =2−H ð8Þ

where H is the Hurst exponent value.

2.3 Multifractal Detrended Fluctuation Analysis

According to Yuval and Broday (2010) and Movahed et al. (2006), the modified
multifractal DFA (MF-DFA) procedure consists of five steps. Suppose that xk is a
series of length N, and that this series is of compact support, i.e. xk =0 for an
insignificant fraction of the values only.

Step 1—Determine the profile:

YðiÞ= ∑
i

k=1
xk − ⟨x⟩½ �, i=1, . . . ,N. ð9Þ

Subtraction of the mean ⟨x⟩ is not compulsory, since it would be eliminated by
the later detrending in the third step.

Step 2—Divide the profile YðiÞ into Ns = intðN s̸Þ non-overlapping segments of
equal lengths s since the length N of the series is often not a multiple of the
timescale s considered, a short part at the end of the profile may remain. In order to
disregard this part of the series, the same procedure is repeated starting from the
opposite end. Thereby, 2Ns segments are obtained altogether.

Step 3—Calculate the local trend for each of the 2Ns segments by a least squares
fit of the series. Then determine the variance:

F2ðs, vÞ= 1
s
∑
s

i=1
Y v− 1ð Þs+ i½ �− yvðiÞf g2 ð10Þ

For each segment v, v=1, . . . ,Ns, and:

F2ðs, vÞ= 1
s
∑
s

i=1
Y N − v−Nsð Þs+ i½ �− yvðiÞf g2 ð11Þ

For v=Ns +1, . . . , 2NS. Here yVðiÞ is the fitting polynomial in segment v.
Linear, quadratic, cubic or higher order polynomials can be used in the fitting
procedure. Since the detrending of the time series is done by the subtraction of the
polynomial fits from the profile, different order DFA differ in their capability of
eliminating trends in the series.
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Step 4—Average over all segments to obtain the qth-order fluctuation function,
defined as

FqðsÞ= 1
2NS

∑
2NS

v=1
F2ðs, vÞ� �q 2̸

� �1 q̸

ð12Þ

Where, in general, the index variable q can take any real value except zero. For
q = 2, the standard DFA procedure is retrieved. Generally we are interested in how
the generalized q dependent fluctuation functions Fq (s) depend on timescale s for
different values of q. Hence, we must repeat steps 2, 3 and 4 for several timescales
s. It is apparent that Fq (s) will increase while increasing s. Of course Fq (s) depends
on the DFA order m. By construction, Fq (s) is only defined for s ≥ m + 2.

Step 5—Determine the scaling behavior of the fluctuation functions by ana-
lyzing log-log plots of Fq (s) versus s for each value of q. If the series xi are long
range power law correlated, FqðsÞ increases, for large values of s, as a power law,

FqðsÞ∼ shðqÞ ð13Þ

In general, the exponent hðqÞ may depend on q. The exponent hð2Þ is identical to
the well-known Hurst exponent.

3 Methodology

The research takes place in Baja California, Mexico, comprised between the
coordinates (32.713N, 114.723O), (32.527N, 117.141O), (28.095N, 115.364O),
and (27.994N, 112.799O).

For the purpose of this research, data from 92 climatological stations distributed
along the studied region with at least 30 years of rainfall records were analyzed.

In order to obtain the previously mentioned data, the use of two climatological
systems was required: Rapid Climatological Information Extractor (ERIC III) and
the National Climatological Database (Clicom); both of them give availability to
daily national climate data.

In order to expand the panorama of this research, it has been chosen to utilize a
series of time scales classified in the following scenarios:

(a) Hurst exponent value H calculated from the analysis of a time scale equally in
duration to the total time series (n = Entire record duration)

(b) Hurst exponent value H calculated from the analysis of 25 years long time
(n = 25 years).

(c) Hurst exponent value H calculated from the analysis of 10 years long time
(n = 10 years).
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(d) Hurst exponent value H calculated from the analysis of 5 years long time
(n = 5 years).

After calculating these values, an average value, obtained from the three pre-
viously mentioned methods (Rescalated range (R/S) using Eq. (6), box-counting
method using Eq. (7) and MF-DFA using Eq. (13), is calculated for each time
scale. The results obtained from same time scales are averaged.

4 Results and Discussions

Given the importance to assess the fractal behavior of the daily rainfall series, and
to analyze the variability of the Hurst exponent at different time scales, an analysis
was carried out considering the previously mentioned time scales which correspond
to: the Hurst exponent values H resulting from the analysis of the entire record for
rainfall daily events, as well for the different time scales (25, 10, and 5 years long).

From Table 1, Hurst values behavior for daily rainfall events, at different time
scales were reported. While analyzing the data, two mainly behaviors can be
noticed for each of the time series in the analyzed variable: anti-persistent and
persistent behavior. Both of these behaviors will be discussed below.

According to Table 1, the stations Presa Rodriguez, San Vicente, Tijuana, Valle
de las Palmas, Presa Emilio Lopez Zamora, and Santo Tomas, which are located in
the northeast region of Baja California, presented Hurst exponent values as follows:
0.45, 0.48, 0.49, 0.48. 0.47 y 0.47 respectively, i.e. they are anti-persistent in time.
This means that rainfall events, which take place in this region, present a high
probability of showing a positive increasing behavior, followed by a negative
increasing behavior in its record values and vice versa.

According to Malamud and Turcotte (1999), an anti-persistent time series will
have a stationary behavior in time; due to the increases and decreases that com-
pensate themselves, statistical moments are independent from the time series.
Rehman (2009) establishes that, in the case of rainfall, an anti-persistent behavior
indicates a lesser dependency in accordance with previously stated values.

Nevertheless, when the rainfall series in the previously mentioned stations were
analyzed in 25 years long scales, the Hurst values were reported as follows: 0.62,
0.65, 0.62, 0.63, 0.64 y 0.62, respectively. These values indicate a persistent
behavior in time, meaning that, if the rainfall series registers a positive increase, it is
more likely that a positive increase will follow. This implies that each rainfall event
has a degree of occurrence over future events or in its long-term behavioral
memory.

Continuing with the analysis of the previously mentioned stations, and consid-
ering the 10 and 5 years long time scales, increases in the Hurst values are
noticeable once again and continuing with a persistent behavior throughout time. It
can be found that the Hurst exponent increases while establishing shorter time
scales.
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Table 1 Averaged Hurst exponent results for climatological stations in Baja California for all
time scales for daily rainfall events

# Climatological
station

Elevation
above sea
level (meters)

Average
annual
rainfall
(mm/year)

Average
annual
temperature
(°C)

Average Hurst exponent for the
different time scales

Entire
record

25
years

10
years

5
years

2001 Agua caliente 400 272.7 12.68 0.51 0.60 0.66 0.68

2002 Bahía de los
ángeles

4 63.77 21.98 0.65 0.74 0.79 0.81

2003 Bataquez 23 69.33 20.02 0.61 0.74 0.78 0.82

2004 Ignacio
Zaragoza

540 294.04 12.21 0.54 0.62 0.69 0.73

2005 Boquilla santa
rosa de l

250 260.9 13.22 0.54 0.64 0.64 0.65

2006 Chapala 660 115.15 19.59 0.57 0.70 0.71 0.75

2008 Colonia guerrero 30 156 15.34 0.53 0.61 0.67 0.71

2009 Colonia Juárez 17 57.13 19.01 0.61 0.68 0.78 0.79

2011 Delta 12 46.65 19.76 0.65 0.72 0.77 0.80

2012 Ejido j. María
Morelos

20 62.74 15.53 0.65 0.77 0.79 0.85

2014 El álamo 1115 265.7 13.66 0.52 0.60 0.66 0.72

2015 El arco 288 102.75 17.62 0.59 0.74 0.78 0.86

2016 El barril 50 81.31 24.12 0.61 0.76 0.78 0.85

2019 El compadre 1110 293.43 18.84 0.58 0.63 0.68 0.69

2020 El mayor 15 56.16 17.74 0.69 0.80 0.83 0.89

2021 El Pinal 1320 453.8 9.22 0.55 0.64 0.70 0.78

2022 El rosario 40 168.59 16.78 0.59 0.72 0.76 0.81

2023 El socorro 26 106.08 17.11 0.59 0.79 0.80 0.84

2024 El testerazo 380 240.57 11.72 0.65 0.72 0.76 0.76

2027 Isla cedros 3 62.72 19.74 0.71 0.81 0.84 0.87

2029 La providencia 40 257.24 13.93 0.57 0.72 0.73 0.78

2030 La puerta 480 326.51 13.56 0.51 0.64 0.69 0.70

2031 La rumorosa 1232 137.99 14.7 0.60 0.73 0.73 0.79

2032 Las escobas 30 132.73 15.03 0.51 0.70 0.75 0.80

2033 Mexicali (DGE) 3 72.98 18.8 0.57 0.75 0.76 0.81

2034 Mexicali (SMN) 3 95.18 20.24 0.60 0.72 0.77 0.88

2035 Ojos negros 680 222.32 12.73 0.50 0.61 0.66 0.69

2036 Olivares
mexicanos

340 279.9 14.46 0.53 0.68 0.70 0.76

2037 Presa Morelos 40 61.4 17.83 0.61 0.66 0.74 0.82

2038 Presa Rodríguez 120 208.46 14.63 0.45 0.62 0.65 0.70

2039 Punta prieta 325 89.93 16.47 0.57 0.74 0.76 0.84

2040 Rancho alegre 120 120.32 15.83 0.59 0.75 0.75 0.82

2041 Nuevo rosarito 20 110.32 16.84 0.58 0.74 0.75 0.79

2043 San Agustín 552 111.09 17.13 0.57 0.75 0.76 0.81
(continued)
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Table 1 (continued)

# Climatological
station

Elevation
above sea
level (meters)

Average
annual
rainfall
(mm/year)

Average
annual
temperature
(°C)

Average Hurst exponent for the
different time scales

Entire
record

25
years

10
years

5
years

2044 San Borja 445 104.9 18.03 0.57 0.73 0.76 0.85

2045 San Carlos 164 263.3 15.19 0.55 0.68 0.69 0.75

2046 San Felipe 10 64.9 22.5 0.66 0.84 0.86 0.94

2049 San Juan de Dios
del norte

1280 362.9 12.09 0.52 0.58 0.61 0.65

2050 San Juan de Dios
del sur

480 92.7 16.7 0.69 0.73 0.76 0.80

2051 San Luis baja
california

440 124.9 17.82 0.62 0.81 0.83 0.89

2053 San miguel 60 187.8 19.44 0.62 0.70 0.71 0.77

2055 San Telmo 110 211.7 13.8 0.55 0.65 0.73 0.76

2056 San Vicente 1150 248.7 13.21 0.48 0.65 0.73 0.74

2057 Santa Catarina
norte

317 137.6 14.53 0.51 0.60 0.62 0.66

2058 Santa Catarina
sur

410 128.2 16.38 0.54 0.71 0.73 0.79

2059 Santa Clara 980 265.3 18.84 0.58 0.69 0.73 0.80

2060 Santa Cruz 400 105.4 15.57 0.52 0.63 0.66 0.71

2061 Santa Gertrudis 28 160.6 18.06 0.62 0.72 0.75 0.84

2063 Santa María del
mar

250 211.5 14.95 0.54 0.71 0.73 0.79

2064 Santo domingo 180 259.14 14.06 0.58 0.72 0.74 0.79

2065 Santo tomas 20 215.6 16.43 0.47 0.62 0.65 0.67

2068 Tijuana 280 206.9 15.22 0.49 0.62 0.66 0.72

2069 Valle de las
palmas

242 291.19 12.74 0.48 0.63 0.69 0.72

2070 Valle redondo 740 204.72 15.01 0.54 0.60 0.61 0.65

2071 Colonia valle de
la trinidad

43 250.99 10.59 0.51 0.59 0.62 0.67

2072 Presa Emilio
López Zamora

710 264.08 14.58 0.47 0.64 0.66 0.69

2079 El alamar 517 135.6 12.8 0.54 0.63 0.68 0.69

2084 El progreso 495 132.9 17.64 0.60 0.73 0.76 0.83

2085 San Regis 860 214.48 17.97 0.59 0.73 0.73 0.78

2086 Ejido Jacume 1000 263.6 13.24 0.58 0.67 0.72 0.74

2088 Ejido héroes de
la Independencia

180 187.2 14.08 0.61 0.71 0.72 0.75

2089 Ejido Emilio
López Zamora

170 269.9 14 0.68 0.75 0.75 0.78

2091 Ejido Ignacio
López Ray

968 214.2 11.88 0.55 0.67 0.69 0.74

(continued)
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Table 1 (continued)

# Climatological
station

Elevation
above sea
level (meters)

Average
annual
rainfall
(mm/year)

Average
annual
temperature
(°C)

Average Hurst exponent for the
different time scales

Entire
record

25
years

10
years

5
years

2092 Ejido san Matías 780 231.18 15.95 0.56 0.63 0.67 0.73

2093 Ejido valle de la
trinidad

210 209.38 11.6 0.57 0.71 0.74 0.79

2096 La calentura 460 71.5 14.27 0.59 0.69 0.72 0.77

2099 Rancho los
algodones

50 46.12 19.3 0.74 0.78 0.80 0.87

2101 El centinela 16 36.32 20.7 0.81 0.88 0.90 0.93

2102 La ventana 8 202.84 21.3 0.71 0.88 0.88 0.92

2104 El Ciprés 50 202.02 15.25 0.59 0.70 0.72 0.74

2106 Maneadero 600 120.7 15.28 0.57 0.69 0.73 0.73

2107 Percebu 4 40.7 19.12 0.78 0.87 0.90 0.92

2108 Punta banda 15 260.6 15.13 0.59 0.70 0.72 0.76

2109 Santa Rosalita 8 136.02 16.64 0.69 0.78 0.82 0.87

2110 Guayaquil 530 123.5 17 0.65 0.72 0.77 0.80

2111 Ejido nueva baja
california

17 134.9 14.13 0.62 0.72 0.74 0.77

2114 Ejido Carmen
Serdán

560 231.8 11.57 0.62 0.72 0.74 0.77

2118 Valle san Rafael 721 218.4 12.45 0.54 0.66 0.69 0.71

2120 Ejido México 75 176.9 13.61 0.64 0.71 0.75 0.78

2121 El hongo 960 286.35 12.55 0.52 0.61 0.63 0.67

2124 El carrizo ii 300 231.88 13.59 0.53 0.63 0.65 0.68

2137 Colonia mariana 9 57.61 19.4 0.65 0.75 0.78 0.82

2139 Colonia
Rodríguez

17 36.8 18 0.73 0.82 0.88 0.90

2140 Colonia
Zaragoza

8 65.16 12.43 0.86 0.82 0.88 0.94

2141 Compuerta
Benassini

20 55.11 17.9 0.63 0.75 0.80 0.84

2144 Ensenada blanca 10 89.07 19.7 0.69 0.75 0.82 0.84

2145 Rancho
Williams

29 63.05 20.57 0.61 0.73 0.77 0.83

2146 Colonia san
pedro mártir

416 106.3 16.19 0.60 0.74 0.75 0.81

2151 Agua de chale 5 53.12 22.59 0.68 0.82 0.83 0.88

2152 Ejido j. María
del pino

1380 273.6 8.7 0.62 0.72 0.74 0.75

2153 Ejido Uruapan 195 288.55 13.9 0.61 0.70 0.72 0.75

2154 Colonia
zacatecas

12 52.12 18.46 0.71 0.80 0.81 0.87
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Anti-persistent series kept a positive increase tendency with minor negative
increases; thus, while considering shorter periods of times (25, 10, 5 years), it is
reasonable that series starts to behave in a more persistent manner. This is due to the
fact that, the shorter the considered time scale is, the greater the possibility to
analyze a time period with a predominant behavior that, in this case, is a persistent
behavior; this could explain the increase in the Hurst values in the analyzed rainfall
series.

Continuing the analysis on the other 86 remaining stations and considering the
established time scales, increases in the Hurst values are noticeable, keeping a
persistent behavior tendency since the values are greater than 0.5.

This means that rainfall series is not stationary and that moments are time scale
dependent. The presence of persistency is an indicator that, not only what takes
place in the present influence the near future, it will also influence long term future.

5 Conclusions

Even though three methods (Multifractal Detrended Fluctuation Analysis, box-
counting method, and rescalated range (R/S)) were utilized to calculate the Hurst
exponent for each analyzed scale time, it is difficult to determine which of these
methods is the most efficient; however, the rescalated range method has been
reported as the most used method.

Registered daily rainfall series throughout Baja California can be characterized
by using the Hurst exponent, having as a result a tendency to present a persistent
behavior. Thus, when a positive increase is registered, it is more likely that the
following increase will be positive as well.

The existence of dependency between the rainfall and temperature climate
variables in relation with altitude can be noticed. Regions with an altitude near to
sea level tend to register the highest temperature values, as well as the lowest
rainfall annual average. It can be established that a proportional inverse relation
between altitude and temperature exists, as well as a proportional direct relation
between altitude and rainfall.

Taking into account the Hurst exponent used in this research, a proportional
inverse relation with altitude and rainfall can be noticed; in regions that are close to
sea level, high values can be reported; on the other hand, regions where the average
annual rainfall is high, the analysis showed low values for the Hurst exponent. It
can be confirmed that the Hurst exponent depends in the climatological conditions
and physiographic characteristics in a specific region.

Taking into account shorter time scales (25, 10, 5 years long in this research), it
can be found that the series’ persistency is stronger. The greater the number of
considered scale times to analyze rainfall series, the greater the possibility to
understand its behavior and tendencies.

Finally, it can be confirmed that fractal theory provides information that allows
to analyze the occurrence of a climatological variable, such as rainfall (in the case
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for this research). This provides a useful tool to study and mitigate climate change
in a given region.

It is recommended to use multifractal theory in future researches, having as a
main purpose the chance to study the scale invariability from a mathematical
perspective and to describe the climatic variables behavior with potential laws
which are characterized by its exponents.
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